Thursday, March 30, 2023
  • Login
Euro Times
No Result
View All Result
  • Home
  • Finance
  • Business
  • World
  • Politics
  • Markets
  • Stock Market
  • Cryptocurrency
  • Investing
  • Health
  • Technology
  • Home
  • Finance
  • Business
  • World
  • Politics
  • Markets
  • Stock Market
  • Cryptocurrency
  • Investing
  • Health
  • Technology
Euro Times
No Result
View All Result

Can Machine Learning Help Predict the Next Financial Crisis?

by Sebastian Petric, CFA
October 20, 2022
in Investing
Reading Time: 4 mins read
A A
0
Home Investing
Share on FacebookShare on Twitter


What do we mean by financial crisis? What are some of the classical methods that predict such crises? How can machine learning algorithms contribute to anticipating them?

Financial crises take a variety of forms: They range from sovereign defaults to bank runs to currency crises. What these episodes all have in common is that an internal vulnerability worsens over time and, after an associated trigger, precipitates a financial crisis.

Pinpointing the specific trigger can be difficult, so the evolution of internal vulnerabilities must be monitored. What precisely are these internal vulnerabilities? In statistical terms, they are the explanatory variables in crisis models. In historic crisis episodes, they often served as the response variable.

While this is part of the classical approach to modeling financial crises, it isn’t the only way to model financial risks.

In the classical crisis model, the standard method is to use logistic regressions to estimate the probability of a financial crisis. Explanatory variables are connected to the response variable with a non-linear link function. The dependent variable is 0 for no crisis and 1 for crisis. This approach hinges on the definition of financial crisis. The past variables are modeled with the help of maximum likelihood by varying the exposures of the explanatory variables to the response variable. In machine learning terms, this a supervised learning technique or a logistic regression with one hidden layer. It is also known as a shallow neural network.

Determining default or crisis probabilities from market prices are among the other crisis modeling methods. For example, from credit default swaps (CDS), an implied default probability can be calculated. Of course, this is fundamentally different from both the logistic regression described above and the application of machine learning algorithms described below.

Tile for T-Shape Teams report

So, what can machine learning algorithms do to improve on the estimation of financial crisis probabilities? First, unsupervised learning is distinct from supervised learning in that there is no response variable. Clustering is one technique that is worth highlighting. The goal of clustering is to group data points in a sensible way. These data groups will be associated with a center of mass to help determine the structure within the datasets. Clustering can be applied to both the dependent and independent variable. Rather than using a fixed threshold to determine a currency crisis, for example, we can split currency returns into different clusters and derive a sensible meaning from each cluster.

Machine learning algorithms can add significant value in this way. While clustering is only one example of the power of coding, these algorithms have a number of other useful applications

Of course, while machine learning is simply an umbrella term for many useful algorithms, whether the machine actually learns is a different question entirely.

To split the time series in a training and test set is, however, is still among machine learning’s major weaknesses. How do you determine the split? Often the decision is arbitrary.

Whatever these shortcomings, they hardly detract from the significant benefits that machine learning can bring. Indeed, now is time to invest in these capabilities.

If you liked this post, don’t forget to subscribe to the Enterprising Investor


All posts are the opinion of the author. As such, they should not be construed as investment advice, nor do the opinions expressed necessarily reflect the views of CFA Institute or the author’s employer.

Image credit: ©Getty Images/noLimit46


Professional Learning for CFA Institute Members

CFA Institute members are empowered to self-determine and self-report professional learning (PL) credits earned, including content on Enterprising Investor. Members can record credits easily using their online PL tracker.

Sebastian Petric, CFA

Sebastian Petric, CFA, is an investment professional with LGT and worked previously as a capital market researcher with Raiffeisen Bank International and as a director in the investment office of UBS. He was educated at the Vienna University of Economics and Business, the London School of Economics, and the University of Oxford. Petric has a strong interest in asset pricing, development finance, inclusive globalization, and sustainable economic growth and recently published his book, entitled Predictability of Financial Crises: The Impact of Fundamental, Policy-induced and Institutional Vulnerabilities on China Compared to other Emerging Markets.



Source link

Tags: crisisfinancialLearningMachinePredict
Previous Post

How to Deal With IBD at the Office

Next Post

7 High Dividend Stocks To Buy And Hold For Decades

Related Posts

28 Rentals Before 28 Years Old (and Doing it All in Just 3 Years!)

by The BiggerPockets Podcast
March 30, 2023
0

Twenty-eight rental units before turning twenty-eight years old? That takes some SERIOUS drive. But after talking to Jake Radawick, the...

Satan Has Become One Of The Hottest Spiritual Figures In America – Investment Watch

by IWB
March 30, 2023
0

by Michael Should we be surprised?  As our society comes apart at the seams all around us, Satan and Satanism are becoming...

The US Dollar World Reserve Status is Officially Over – Investment Watch

by IWB
March 30, 2023
0

by Chris Black How can this US administration fail in every single thing? This is the end of the American...

Top 10 Cheapest Monthly Dividend Stocks Now

by Nikolaos Sismanis
March 29, 2023
0

PermRock Royalty Trust is a trust formed in November 2017 by Boaz Energy, a company whose expertise is in acquiring,...

A Spike In Supply Could Tank Multifamily Prices This Year

by Dave Meyer
March 29, 2023
0

In this article Commercial real estate is facing stress from several directions. The primary stress is rising interest rates, which...

Monetary Madness End Game – Investment Watch

by IWB
March 29, 2023
0

Guest Post by Craig Hemke at SprottMoney.com: For over twelve years at TF Metals Report, we have been writing about...

Next Post

7 High Dividend Stocks To Buy And Hold For Decades

SNAP crashes -20% AH after release of Q3 earnings : stocks

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

BLOODY HORROR: Bystanders Videotape Father Stabbed to Death Inside Starbucks in Front of 3-Yr-Old Daughter For Asking Attacker to Stop Vaping Near His Child

March 30, 2023

Syrah Resources breaks production record, says U.S. anode plant on track (OTCMKTS:SYAAF)

March 30, 2023

Wall St opens higher as bank fears fade, focus on inflation data By Reuters

March 30, 2023

Terra Luna Classic Network Upgrade; Joint L1 Task Force Q2 Plan

March 30, 2023

Microsoft Defender flagged legit URLs as malicious

March 30, 2023

Constellation Brands taps Tastemade to help draw new customers

March 30, 2023
Euro Times

Get the latest news and follow the coverage of Business & Financial News, Stock Market Updates, Analysis, and more from the trusted sources.

CATEGORIES

  • Business
  • Cryptocurrency
  • Finance
  • Health
  • Investing
  • Markets
  • Politics
  • Stock Market
  • Technology
  • Uncategorized
  • World

LATEST UPDATES

BLOODY HORROR: Bystanders Videotape Father Stabbed to Death Inside Starbucks in Front of 3-Yr-Old Daughter For Asking Attacker to Stop Vaping Near His Child

Syrah Resources breaks production record, says U.S. anode plant on track (OTCMKTS:SYAAF)

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2022 - Euro Times.
Euro Times is not responsible for the content of external sites.

No Result
View All Result
  • Home
  • Finance
  • Business
  • World
  • Politics
  • Markets
  • Stock Market
  • Cryptocurrency
  • Investing
  • Health
  • Technology

Copyright © 2022 - Euro Times.
Euro Times is not responsible for the content of external sites.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In